Assignment 7

Ausgabe: 09 Dec 2015 Abgabe: 16 Dec 2015

Problem 1: Stable networks

Consider the connections model for five agents, $0<\delta<1$, and $c>0$.
Find a necessary and sufficient criterion for δ and c such that the circular graph C_{5} is stable.

Problem 2: Efficient networks

Consider the connections model for the set $A=\{1, \ldots, n\}$ of agents, $0<\delta<1$, and $c>0$.
A graph $G=(A, E)$ is said to be efficient if and only if it maximizes the summation of each agent's utility, i.e.,

$$
U(G)=\operatorname{def} \sum_{i \in A} u_{i}(G) \geq \sum_{i \in A} u_{i}\left(G^{\prime}\right)=U\left(G^{\prime}\right)
$$

for all graphs $G^{\prime}=\left(A, E^{\prime}\right)$.
Prove the following statements:
(a) If $\delta-c>\delta^{2}$ then the complete graph K^{n} is efficient.
(b) If $\delta-c<\delta^{2}$ and $c<\delta+\frac{n-2}{2} \cdot \delta^{2}$ then a star graph $K_{1, n-1}$ is efficient.
(c) If $\delta-c<\delta^{2}$ and $c \geq \delta+\frac{n-2}{2} \cdot \delta^{2}$ the the empty graph is efficient.
(d) Efficient graphs are unique.

Problem 3: Convergence to networks

Consider the connections model for four agents, $0<\delta<1$, and $c>0$ such that $0<\delta-c<\delta^{2}$, i.e., a star graph $K_{1,3}$ is stable. Furthermore, consider the myopic network formation process from the lecture.

Find sequences of dyads such that the myopic process converges to non-isomorphic graphs.

