UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub / Dr. David Schoch Network Dynamics Winter 2015/16

Assignment 7

Ausgabe: 09 Dec 2015 Abgabe: 16 Dec 2015

Problem 1: Stable networks

Consider the connections model for five agents, $0 < \delta < 1$, and c > 0.

Find a necessary and sufficient criterion for δ and c such that the circular graph C_5 is stable.

Problem 2: Efficient networks

Consider the connections model for the set $A = \{1, ..., n\}$ of agents, $0 < \delta < 1$, and c > 0.

A graph G = (A, E) is said to be *efficient* if and only if it maximizes the summation of each agent's utility, i.e.,

$$U(G) =_{\operatorname{def}} \sum_{i \in A} u_i(G) \ge \sum_{i \in A} u_i(G') = U(G')$$

for all graphs G' = (A, E').

Prove the following statements:

- (a) If $\delta c > \delta^2$ then the complete graph K^n is efficient.
- (b) If $\delta c < \delta^2$ and $c < \delta + \frac{n-2}{2} \cdot \delta^2$ then a star graph $K_{1,n-1}$ is efficient.
- (c) If $\delta c < \delta^2$ and $c \ge \delta + \frac{n-2}{2} \cdot \delta^2$ the the empty graph is efficient.
- (d) Efficient graphs are unique.

Problem 3: Convergence to networks

Consider the connections model for four agents, $0 < \delta < 1$, and c > 0 such that $0 < \delta - c < \delta^2$, i.e., a star graph $K_{1,3}$ is stable. Furthermore, consider the myopic network formation process from the lecture.

Find sequences of dyads such that the myopic process converges to non-isomorphic graphs.