Assignment 8

Ausgabe: 16 Dec 2015 Abgabe: 13 Jan 2016

In the following, we consider game-theoretic models of strategic network formation with structural holes for n agents:

- $A=\{1, \ldots, n\}$ is the set of persons,
- $S=S_{1} \times \cdots \times S_{n}$ where $S_{i}=\mathcal{P}(\{(i, j) \mid j \in A \backslash\{i\}\})$, i.e., i 's strategy is basically a set of selected persons; here, we consider friendship as a directed relationship which needs not necessarily be mutually confirmed.

Utilities will reflect differences between the models.

Problem 1: Heterogeneous costs

Let $c_{i, j} \geq 0$ denote agent i 's cost of buying a link to agent j. The utility function $u=$ $\left(u_{1}, \ldots, u_{n}\right)$ is given as follows for each $i \in A$ (similar to the utility function discussed in the lecture):

$$
u_{i}\left(s_{1}, \ldots, s_{n}\right)=\operatorname{def} \alpha_{0} \cdot\left(\left\|s_{i}\right\|+\left\{j \mid(j, i) \in s_{j}\right\} \|\right)+\sum_{(i, j),(i, k) \in s_{i}} \beta\left(r_{j, k}\right)-\sum_{(i, j) \in s_{i}} c_{i, j},
$$

where $\alpha_{0} \geq 0, \beta$ is a decreasing, non-negative function, and $r_{j, k}$ is the number of length- 2 paths in the underlying undirected graph induced by the strategies of the agents.

Find a Nash equilibrium for the case of five agents, i.e., $A=\{1,2,3,4,5\}$, and cost model:

$$
c_{i, j}=\operatorname{def} \begin{cases}j-i & \text { if } j \geq i \\ 5 & \text { if } j<i\end{cases}
$$

Problem 2: Neurotic persons

Consider the formation of a friendship network of n neurotic persons. A neurotic person wants to have many friends but wants these friends not to be friends among each other. We formulate this scenario by utility function $u=\left(u_{1}, \ldots, u_{n}\right)$ where $u_{i}\left(s_{1}, \ldots, s_{n}\right)$ is the number of pairs $\{j, k\}$ such that $(i, j),(i, k) \in s_{i}$ but neither $(j, k) \in s_{j}$ nor $(k, j) \in s_{k}$.

Find (ideally, all) Nash equilibria of Γ for n persons.

Problem 3: Neurotic persons

Consider again the neurotic-network formation process in Problem 2. Assume that the utility function u_{i} is modified as follows for each $i \in A$:

$$
u_{i}^{\prime}\left(s_{1}, \ldots, s_{n}\right)==_{\operatorname{def}}\left\|s_{i}\right\|-\left\|\left\{\{j, k\} \mid(i, j),(i, k) \in s_{i} \wedge\left((j, k) \in s_{j} \vee(k, j) \in s_{k}\right)\right\}\right\|,
$$

i.e., i 's utility is the out-degree minus the number of pairs of simply connected friends.

Find (ideally, all) Nash equilibria of Γ for n persons.

Merry Christmas and a Happy New Year!

