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An example of social influence:

Relative agreement 1

A simple model to study aspects of social influence is the Relative Agreement model of
Deffuant, Amblard, Weisbuch, and Faure [2]. The model has been introduced to address
the question whether it is possible to identify certain network parameters that endoge-
neously govern the distribution of opinions within a human population. A particular
goal was to look for parameter values that allow extreme opinions to dominate eventually
within a human population. The model is representative for a physics-oriented approach
to complex networks:

(a) Methodologically, it employs agent-based modelling. Agent-based modelling uses sim-
plified interaction models and simulations to explore a nonlinear dynamical behavior
of complex systems. Agent-based modelling is applied when kinetic models involv-
ing differential equation systems are inappropriate, e.g., due to the number and the
heterogeneity of variables.

(b) It explains a complex phenomenon in a stylized fashion.

Apart from the methodological perspective, the concrete, original research motivation for
the model lies in the influence “green” farmers have attained in the farming population.

1.1 The formal model

We consider the following formal scenario: A population of n agents is given. An agent i
is characterized by two variables:

• opinion xi ∈ [−1, 1]

• uncertainty ui > 0

Thus, the actual opinion of the agent ranges in her opinion segment

Si =def [xi − ui, xi + ui],

the size of which is (xi + ui)− (xi − ui) = 2ui.

We suppose a directed model of influence where any two agents use a communication chan-
nel. Agent i locally communicates to agent j over her communication channel, possibly
causing changes in opinion and uncertainty of agent j. In this situation, agent i is the
influencer of agent j and agent j is the influenced of agent i.
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2 Chapter 1. An example of social influence: Relative agreement

The effect of a communicative influence is given by an update rule which is assumed to
be the same for all interaction pairs of agents. Figure 1.1 describes a situation of an
interaction pair (i, j).

opinion segment of j

opinion segment of i

overlap hij

non-overlap 2ui − hij

xjxj − uj xj + uj

xi xi + uixi − ui

−1 1

1−1

Figure 1.1: The Relative Agreement model

The update rule is based on the agreement along the opinion segments of agents i and j,
i.e.,

hij − (2ui − hij) = 2(hij − ui),

in relation to the uncertainty of the influencer

2(hij − ui)
2ui

=
hij
ui
− 1.

The formal specification of the update rule is given by defining local transitions:

xj ← xj +

{
µ
(
hij
ui
− 1
)

(xi − xj) if hij ≥ ui
0 otherwise

uj ← uj +

{
µ
(
hij
ui
− 1
)

(ui − uj) if hij ≥ ui
0 otherwise

Here, µ is some decay constant, 0 < µ ≤ 1.

Proposition 1.1 Let an interaction pair (i, j) be given. Let hij denote the overlap of the
opinion segments of the actors i and j before interaction, and let h′ij denote the overlap
of the opinion segments of the actors i and j after interaction. Then, hij ≤ h′ij.

Proof: Let (xi, ui) be the opinion/uncertainty pair of actor i, let (xj , uj) be the opin-
ion/uncertainty pair of actor j. According to our update rule, if hij ≤ ui then there are no
changes, neither in the opinions nor in the uncertainties of both actors. That is, h′ij = hij .
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1.1. The formal model 3

So, let hij > ui. Let x′j denote actor j’s opinion after interaction, and let u′j denote actor
j’s uncertainty after interaction. More specifically, we have

x′j =

(
1− µ

(
hij
ui
− 1

))
xj + µ

(
hij
ui
− 1

)
xi,

u′j =

(
1− µ

(
hij
ui
− 1

))
uj + µ

(
hij
ui
− 1

)
ui.

The overlap h′ij is given by

h′ij = min(xi + ui, x
′
j + u′j)−max(xi − ui, x′j − u′j).

Note that hij ≤ 2ui. Thus, the update rules define convex combinations. By linearity, we
can easily examine four cases depending on the locations of the boundaries of the opinion
segments of both agents (Exercise). This proves the proposition.

Proposition 1.2 Let the interaction pair (i, j) be given. For k ∈ N, let x
(k)
j be actor

j’s opinion after the k-th round of the directed interaction (i, j), and let u
(k)
j be actor j’s

uncertainty after the k-th round of the directed interaction (i, j). Then,

lim
k→∞

x
(k)
j = xi, lim

k→∞
u
(k)
j = ui.

Proof: We only prove the convergence in opinions. Without loss of generality, we may

assume that xi ≥ xj . Since hij ≤ 2ui, we obtain as an upper bound on the opinion x
(k)
j

for k ∈ N+

x
(k)
j ≤ (1− µ)x

(k−1)
j + µxi,

and furthermore, by induction,

x
(k)
j ≤ (1− µ)kxj +

(
1− (1− µ)k

)
xi.

Hence, limk→∞ x
(k)
j ≤ xi. For the lower bound, we write

x
(k)
j = (1− µAk−1)x

(k−1)
j + µAk−1xi,

where Ak =
h
(k)
ij

ui
− 1 is the relative agreement after the k-th interaction. By Proposition

1.1, it holds that Ak ≤ Ak+1 for all k ∈ N. Thus, we can estimate

x
(k)
j ≥ (1− µA0)x

(k−1)
j + µA0xi,

and, again by induction,

x
(k)
j ≥ (1− µA0)

kxj +
(

1− (1− µA0)
k
)
xi,

Hence, limk→∞ x
(k)
j ≥ xi. This proves the proposition.
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4 Chapter 1. An example of social influence: Relative agreement

1.2 The role of extremists

In general populations of actors, it is not clear at all whether there is any convergence to a
“stable” opinion/uncertainty pattern over several time steps. If unambiguous convergence
is reachable, there are three important cases: convergence to the opinion poles, either
positive or negative, or convergence to the middle. We are interest in studying convergence
to extreme opinions.

Extremists are people with extreme opinions, i.e., opinions close to the boundaries mea-
sured by −1 and 1. Furthermore, the model of extremists within a population is based on
two observations which are claimed to possess a certain anectodal evidence [2]:

1. “. . . people who have extreme opinions tend to be more convinced,”

2. “. . . people who have moderate initial opinions, often express a lack of knowledge
(and uncertainty).”

A simplification of these observations can be incorporated into the Relative Agreement
model as follows. Let ue be the uncertainties of the extremists, supposed to be small
and the same for all extremists. Let u be the (identical) uncertainty of the moderate.
According to our observations, it holds that u > ue. Then, the population can be initially
decomposed into three classes corresponding to their opinion/uncertainty pairs:

1. positive extremists: xi ≈ 1, ui = ue

2. negative extremists: xi ≈ −1, ui = ue

3. moderates: xi ≈ 0, ui = u

Let pe denote the fraction of extremists, either positive or negative, in the population.
Depending on the fraction of actors belonging to these classes, an extremism bias can
be defined. Let p+ be the fraction of positive extremists, and let p− be the fraction of
negative extremists. Then, the extremism bias δ is given as

δ =
p+ − p−
p+ + p−

The simulation works in two phases:

1. For initalization, (a) choose n opinions uniformly at random from [−1, 1] and set all
n uncertainties to u, (b) for the p+ ·n most positive opinions and p− ·n most negative
opinons, the uncertainties are set to ue.

2. Iteratively choose a pair (i, j) of agents and let agent i exert influence on agent j
according to the specified update rule.
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1.2. The role of extremists 5

The stylized simulation results can be divided into three stable scenarios: central clus-
tering, bipolarization, single polarization. The following figures show diagram schemes
for each of the three scenarios together with parameter settings such that the described
behavior can be observed. The x-axis codes for time, i.e., number of iterations per actor,
and the y-axis codes for opinions. A trajectory of an actor’s opinion over the course of
time runs inside the region bounded by the drawn curves. Common parameters for all
figures (and the simulations) are n = 200, µ = 0.5, δ = 0, and ue = 0.1. The initial
uncertainty parameter u is increased from figure to figure.

In Figure 1.2, the initial uncertainty of the moderates is u = 0.4. It is an example
of central convergence. The majority of the moderate actors are not attracted by the
extreme opinions.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 0.4)

−1

1

0

iterations per actor

opinion x

Figure 1.2: Scheme of central convergence.

In Figure 1.3, the initial uncertainty of the moderates is u = 1.2. It is an example of
convergence to both extremes. The initially moderate actors split and become extremists.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.2)

−1

1

0

iterations per actor

opinion x

Figure 1.3: Scheme of bipolarization.

In Figure 1.4, the initial uncertainty of the moderates is u = 1.4. It is an example
of convergence to one single extreme. In this case, the majority of the population is
attracted by one of the extremes. This behavior can take place even when the number of
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6 Chapter 1. An example of social influence: Relative agreement

initial extremissts is the same at both extremes, which is claimed to have been a priori
unexpected.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.4)

−1

1

0

iterations per actor

opinion x

Figure 1.4: Scheme of single polarization.
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Networks as a dynamical systems 2

2.1 Networks from data

2.1.1 Network data

Data. Data refers to variables for entites (or units of observation). More specifically,

• A is a set of (atomic) items,

• for i ∈ A, variable xi represents values of a common attribute for all items in A, i.e.,
x is a mapping x : A→ R : i 7→ xi, or x = (xi)i∈A where xi ∈ R,

• R is the range of x, A is called the domain of x

Typically in emprical research, multiple attributes are collected in tables where the columns
represent items and the rows represent attributes.

Example: Consider a set A = {Abner,Ashkan,Betty,Elshad,Evette,Kenzo}
of six students. Suppose we are interested in the working days each student is
regularly present at the university during a week in a certain semester. This
data is given by the following table:

A mon tue wed thu fri

Abner x x x x
Ashkan x x x

Betty x x x
Elshad x x
Evette x x x
Kenzo x x

Clearly, we have five attributes with range {x, } defined on A.

According to the range, attributes can be classified:

• nominal or categorical: there are no relationships among the elements of the range
other than equality or inequality (e.g., names, types, labels)

• ordinal: the range satisfy certain order properties such as required for weak orders,
preference relations, rankings (e.g., paths in policy routing)
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8 Chapter 2. Networks as a dynamical systems

• numerical: the range consists of number such as N or R≥0.

We assume that 0 represents a missing or neutral datum.

Dyadic data. Entities need not be atomic; they can be compound objects of more
elementary entities. More specifically,

• a dyad is a pair of items,

• two dyads overlap if and only if they share a member,

• network data is the dyadic data characterized by

1. units of observation are dyads and

2. dyads are overlapping.

As a remark, dyadic data analysis assumes independence of dyads (in a statistical sense). In
contrast, network analysis is fundamentally based on dependence of dyads. In this regard
network data are a more general concept than dyadic data. For instance, in a study
we could explore relationship among married couples. The relevant data may include:
attributes of the individual, e.g., gender, income, personality; attributes of the couple,
e.g., age difference, duration of marriage, number of children; or, attributes of the pair of
individuals,e.g., time spent together, number of mutual friends. The first class of attributes
refers to (atomic) data, the second class of attributes refers to dyadic data, and the third
class of attributes refers to network data.

Example: We continue our student example. Given the five (atomic) attributes
mon, tue, wed, thu, fri: A → {x, }, we are interested in the number of days,
two students can meet at the university. This is network data.

Time-dependent data. Attribute values may change over time. And, there are differ-
ences in how data can depend on time. In general, time-dependent data can be classified
as follows:

• panel data (or longitudinal data): we have attributes values of all items for at least
two points in time, i.e., x(1), x(2), . . . , x(k) where x(j) = (xi(j))i∈A.

• time-series data: we have attribute values of a single item over time.

• cross-sectional data: we have attribute values of all items for one specific point in
time.

• event data: we have attribute values for items labelled with a time stamp (e.g., log
files, audit trails, live scores, etc.)

Typically, event data are transformed into panel data.

Network Dynamics – Lecture Notes



2.1. Networks from data 9

2.1.2 Network representations

We adopt a network view where we consider networks to be representations of a specific
format. That is, we are not so much interested in what is represented, but how it is
represented. As overlapping dyads are the fundamental objects of network analysis, we
need a notion to collect all possible dependencies among dyads. This is done by introducing
interaction domains.

Definition 2.1 Let A be a set of items. An interaction domain I on A is a binary,
symmetric relation I ⊆ A×A.

In many cases, I = A×A or I = (A×A) \ { (i, i) | i ∈ A }.

Definition 2.2 Let A be a set of items. A (whole) network consists of a set of attributes
on an interaction domain I ⊆ A×A and a (possibly empty) set of attributes on A.

For a network, items of A represent actors, and attribute values xi,j 6= 0, where (i, j) ∈ I,
are ties. Notice that xij is a usual abbreviation for x(i,j) for any dyad (i, j) ∈ I. Attributes
on I are called network attributes; attributes on A are called behavioral attributes.

Example (cont’d): In our student example, the attributes mon, tue, wed,
thu, and fri are behavioral attributes. We are interested in studying the co-
presence network x given by the number of days two students visit the uni-
versity. The interaction domain is I = (A × A) \ { (i, i) | i ∈ A }. Then, the
network attribute x : I → N is defined for all dyads (i, j) ∈ I as

xij =def ‖{ k | dayk(i) = dayk(j) = x }‖,

where day1 = mon, day2 = tue, day3 = wed, day4 = thu, and day5 = fri.

There are three standard representations of networks. In the following, we discuss the
graph, matrix, and relational representation for a single network attribute. Let x : I → R
be a network attribute defined on an interaction domain I ⊆ A×A.

Graphs. The (weighted, directed) graph G(x) = (V,E,w) of network x consists of

• vertex set V =def A,

• edge set E =def { (i, j) ∈ I | xij 6= 0 }, and

• edge weights w : E → R : (i, j) 7→ xij .
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10 Chapter 2. Networks as a dynamical systems

If xij = xji for all (i, j) ∈ I, G(x) can be defined correspondingly as an undirected graph.

Example (cont’d): Let us assume that the set A of students is enumerated
1, . . . , 6. The columns are enumerated 1, . . . , 5, corresponding to the day in
the week. Furthermore, we transform our initial data into binary data (on
the left-hand side). Then, the network attribute x can be represented by the
undirected graph on the righ-hand side.

A 1 2 3 4 5

1 1 0 1 1 1
2 0 1 1 1 0
3 1 0 1 0 1
4 1 0 1 0 0
5 0 1 0 1 1
6 0 1 0 1 0

5

2

1

36 4

1

1

1

2

1

2

2

2

2

2

3

Matrices. A completion of an attribute to the full interaction domain A×A by imputing
zeroes gives the adjacency matrix of the associated weighted graph, which is another
representation of a network.

Example (cont’d): The network attribute x can be represented by the
weighted adjacency matrix on the left and the unweighted adjacency matrix
on the right:

0 2 3 2 2 1
2 0 1 1 0 2
3 1 0 2 1 0
2 1 2 0 0 0
2 0 1 0 0 2
1 2 0 0 2 0





0 1 1 1 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 0 1 0 0 1
1 1 0 0 1 0


Note that, by abuse of notation, we denote both matrices withA(x); the specific
meaning is obtained from the context. Note also that there is a difference
between the zeroes in the matrix. The zeroes along the diagonal are artifacts,
whereas the zeroes beyond the diagonal are values of the network attribute.

Relations. The (binary) relation →⊆ A×A of network x is defined by

(i, j) ∈→ ⇐⇒def (i, j) ∈ I ∧ xij 6= 0

In infix notation, this is written as i→ j.

In the following we extend these notions and representations to another type of networks:
two-mode networks. Assume that the observational units are relations between pairs of

Network Dynamics – Lecture Notes



2.1. Networks from data 11

items of different types, e.g., users and fan sites on Facebook, authors and scientific papers,
or politicians and boards. We generalize interaction domains.

Definition 2.3 An affiliation domain is a relation A ⊆ A× S on disjoint sets A and S.

Definition 2.4 A two-mode network consists of a set of attributes on an affiliation
domain A ⊆ A× S and a (possibly empty) set of attributes on A and S.

All notions for networks translate to two-mode networks. Note that two-mode networks
are bipartite by definition.

Example (cont’d): In our student example, the initial data can be modelled
as a two-mode network. The set A remains the set of students identified either
by name or by number. Define S =def {mon, tue,wed, thu, fri}. The table with
the initial data corresponds to the incidence matrix of a two-mode network
x : A× S → {0, 1} represented by the following bipartite graphs:

Abner

Ashkan

Betty

Elshad

Evette

Kenzo

mon

tue

wed

thu

fri

Definition 2.5 Let X ∈ Rn×m be the matrix associated with a two-mode network
attribute, ‖A‖ = n and ‖S‖ = m. The networks associated with the matrices X · XT

and XT ·X are called one-mode projections.

Note that the interaction domain of X ·XT is A×A and the interaction domain of XT ·X
is S × S.

Example: Consider the sets A = {1, 2, 3, 4, 5, 6} and S = {1, 2, 3, 4, 5}, i.e.,
A represents the students, S represents the week days. Let X denote the
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12 Chapter 2. Networks as a dynamical systems

6 × 5 incidence matrix given by the binary initial data. Then, we obtain the
following one-mode projection on the side of students:

X ·XT =



1 0 1 1 1
0 1 1 1 0
1 0 1 0 1
1 0 1 0 0
0 1 0 1 1
0 1 0 1 0

 ·


1 0 1 1 0 0
0 1 0 0 1 1
1 1 1 1 0 0
1 1 0 0 1 1
1 0 1 0 1 0

 =



4 2 3 2 2 1
2 3 1 1 2 2
3 1 3 2 1 0
2 1 2 2 0 0
2 2 1 0 3 2
1 2 0 0 2 2


The weighted graph of the one-mode projection looks like follows:

5

2

1

36 4

1

1

1

2

1

2

2

2

2

2

3

3

4

2 2

33

Notice that the (weighted) loops are the only difference to the originally defined
network attribute x.

The one-mode projection on the side of the days is given by:

XT ·X =


1 0 1 1 0 0
0 1 0 0 1 1
1 1 1 1 0 0
1 1 0 0 1 1
1 0 1 0 1 0

 ·


1 0 1 1 1
0 1 1 1 0
1 0 1 0 1
1 0 1 0 0
0 1 0 1 1
0 1 0 1 0

 =


3 0 3 1 2
0 3 1 3 1
3 1 4 2 2
1 3 2 4 2
2 1 2 2 3


It contains information on how many of the students visit the university on one
(along the diagonal) or two (beyond the diagonal) specific days. For instance,
zero indicates that no student can be seen on both monday and tuesday at the
university.

2.1.3 Time-dependent networks

We consider attributes on an interaction (or affiliation) domain changing over time. The
focus is on panel network-data.

Definition 2.6 A time-dependent network is a set of attributes on an interaction domain
I ⊆ A × A and a (possibly empty) set of attributes on A, where all atributes depend on
(same) time t ∈ N.
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2.2. Iterated network maps 13

Note that we consider time-discrete networks.

In order to study time-dependent behavior of networks, we introduce specific formal
notions. We restrict ourselves to single-attribute networks with a fixed interaction domain
but will later discuss more complex examples.

Let x : I → R be a network attribute. For the sake of convenience, we assume that x is a
numerical attribute. Furthermore, we consider an infinite sequence of identical copies of
x, i.e., (x(t))t∈N or x : I × N → R. The attribute values are called states. The set of all
possible sequences is called a process; one specific sequence is called trajectory. A dynamic
F is a mechanism for selecting trajectories of a process. A dynamic makes assumptions
on how the state at time step k will look like; here, depending only on the initial state z0
and time k. We thus can express a dynamic as a sequence (ϕt)t∈N where ϕk : RI → RI .

We adopt notions and notations from dynamical systems. That is, the functions ϕk are
iterated maps. Let F : RI → RI be any function. Then, inductively define

F 0(z) =def z, F k(z) =def F (F k−1(z)) for k > 0.

So, ϕk = F k.

The following summarizes the notions schematically:

x(0) → x(1) → x(2) → . . . → x(k) → . . . process
↓ ↓ ↓ ↓
z0 → z1 → z2 → . . . → zk → . . . trajectory
↓ ↓ ↓ ↓

ϕ0(z0) → ϕ1(z0) → ϕ2(z0) → . . . → ϕk(z0) → . . . dynamic
↓ ↓ ↓ ↓

F 0(z0) → F 1(z0) → F 2(z0) → . . . → F k(z0) → . . . iterated map

Notice that iterated maps describe memory-less dynamics.

2.2 Iterated network maps

We study dynamics induced by iterating a map F : RI → RI , i.e., a network x is mapped
to a network F(x). In general, we focus on network attributes but, as networks are
collections of attribute, examples of behavioral attributes and examples of networks with
more than one attribute are discussed as well.

Example: (Link prediction) In link prediction, given a snapshot of a social
network, we are interested in what new interactions are likely to occur in
near future [14]. A mechanism often assumed is the tendency of social net-
works to triadic closure, i.e., closing open triangles. Suppose we are given the
(symmetrical) interaction domain I = { {i, j} | i, j ∈ A, i 6= j } for a set
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14 Chapter 2. Networks as a dynamical systems

A = {1, . . . , n}. An open triangle of the (undirected) network x : I → {0, 1}
is formed by three dyads {i, j}, {j, k}, and {i, k}, where i, j, k are pairwise
different, such that x{i,j} = x{j,k} = 1 and x{i,k} = 0. In the graph of network,
an open triangle is thus an induced path P3, i.e., a path consisting of three
nodes and two edges. Define F : {0, 1}I → {0, 1}I to be the map that closes
all open triangles of a given network x, i.e., if dyads {i, j}, {j, k}, and {i, k}
form an open triangle in the network x then in network F (x), it holds that
F(x){i,j} = F(x){j,k} = F(x){i,k} = 1. For instance, an open triangle is closed
in the first network

1

2 3

F−→
1

2 3

whereas there is no open triangle in the second network:

1

2 3

F−→
1

2 3

Of course, there can be more than one open triangle in a network:

2 31 4
F−→ 2 31 4

Changes of behavioral attributes are often referred to as dynamics on networks, in contrast
to dynamics of networks which describes the change of network attributes.

Example: (Riots) The example was given by Granovetter [8]. We consider
the following behavioral attribute: Let A = {1, . . . , n} be any set of persons,
I = (A × A) \ { (i, i) | i ∈ A }. Each person i has a certain threshold ti, i.e.,
if ti persons in her neighborhood have joined the riot, person i joins as well.
So, r : A→ {0, 1} is the attribute indicating participation in the riot for each
person. Define F : {0, 1}A → {0, 1}A to be the mapping that is component-wise
given as follows:

F (r)i =def

 1 if
∑

j∈A\{i}

rj ≥ ti

0 otherwise

Network Dynamics – Lecture Notes
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Generally, attributes can interact in a complex manner within networks. In the following,
we discuss a simple network example with more than one attribute.

Example: (Job rotation) In a company, n trainee employees can be assigned
to n positions in k departments D1, . . . , Dk. It is supposed that department
Di has ni positions, so that n1 + · · ·+ nk = n. Assume that positions are enu-
merated in ascending order of the departments, i.e., Di =def {Ni−1+1, . . . , Ni}
for all i ∈ {1, . . . , k}, where Ni =def

∑i
j=1 nj for i > 0 and N0 =def 0. Also

assume that trainee employees are enumerated 1, . . . , n.

We consider two different networks: Let the set A of items consist of trainees,
i.e., A = {1, . . . , n}. An assigment is a bijective mapping π : A → {1, . . . , n},
i.e., trainee i is currently at position π(i). Let the set S of affiliations consist
of departments, i.e., S = {D1, . . . , Dk}.

• A two-mode network x : A× S → {0, 1} is defined as follows:

x(i,Dj) = 1⇐⇒def π(i) ∈ Dj

• A one-mode network y : A × A \ { (i, i) | i ∈ A} → {0, 1} is defined as
follows:

y(i, j) = 1⇐⇒def there is an ` ∈ {1, . . . , k} such that {π(i), π(j)} ⊆ D`

We assume that the company rotates trainees cyclically to the next position.

Formally, we consider network {x, π} and {y, π}. Rotations are maps

F2 = (F2, F ) : {0, 1}A×S × {1, . . . , n}A → {0, 1}A×S × {1, . . . , n}A

F1 = (F1, F ) : {0, 1}I × {1, . . . , n}A → {0, 1}I × {1, . . . , n}A

which can be component-wise defined as follows:

F (π)i =def 1 +
(
π(i) modn

)
F2(x)ij = 1 ⇐⇒def F (π)i ∈ Dj

F1(y)ij = 1 ⇐⇒def there is an ` ∈ {1, . . . , k} such that {F (π)i, F (π)j} ⊆ D`
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16 Chapter 2. Networks as a dynamical systems

For instance, let A = {1, . . . , 6}, D1 = {1, 2, 3}, D2 = {4}, and D3 = {5, 6}.
The effect of F on the identity assigment can be depicted as follows:

1

6

5

4

3

2

1

2

3

4

5

6

F−→

1

6

5

4

3

2

1

2

3

4

5

6

Given the identity assignment, the corresponding two-mode network x is shown
on the left hand-side, and the result of applying the component map F2 is
shown on the right-hand side:

2

1

3

1

6

5

4

3

2

F2−→ 2

1

3

1

6

5

4

3

2

Likewise, the effect to applying the component map F1 on the one-mode net-
work y can be shown as follows:

3

2

5

6

1

4

F1−→

3

2

5

6

1

4
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2.2. Iterated network maps 17

2.2.1 Orbits

A fundamental concept in the study if iterated maps is the orbit.

Definition 2.7 Let F : J → J be a total map, z0 ∈ J . The orbit of z0 under F is defined
to be the sequence (z0, z1, . . . , zk, . . . ) such that zk = Fk(z0) for all k ∈ N.

Note that an orbit is a specific trajectory.

Example: (Link prediction) Let F : {0, 1}I → {0, 1}I be as defined. The
initial graphs in orbit of some given network x(0) under F are given by the
following sequence (together with the underlying interaction domain):

3

2

5

6

1

4

F−→
3

2

5

6

1

4

F−→
3

2

5

6

1

4

F−→
3

2

5

6

1

4

F−→ · · ·

As we quickly reach a complete graph, there are no more open triangles and,
thus, a further application of F does not change the graph anymore, i.e.,
F3(x(0)) = F4(x(0)) = · · · = Fk(x(0)) for k ≥ 3.

Example: (Riots) Given a small population A = {1, 2, 3, 4} with thresholds
ti = i− 1 for i ∈ A, the orbit of r(0) = (0, 0, 0, 0) under F : {0, 1}A → {0, 1}A
is as follows:

(0, 0, 0, 0)
F−→ (1, 0, 0, 0)

F−→ (1, 1, 0, 0)
F−→ (1, 1, 1, 0)

F−→ (1, 1, 1, 1)
F−→ . . .

Again, when iterating F four times for an initially peaceful population, we
have reached a state which does not change any more. That, a riot has formed
involving the full population. A possibly (local) media reaction to such a
cascading effect might lead to the following headline: “A crowd of radicals
engaged in riotous behavior.”

Now, suppose person 2 has a slightly different threshold t2 = 2 while all other
thresholds are the same as before. Then, the orbit of r(0) is as follows:

(0, 0, 0, 0)
F−→ (1, 0, 0, 0)

F−→ (1, 0, 0, 0)
F−→ . . .

Here, after one iteration the cascading effect stops and we have reached a
configuration where no more persons join the riot. A possibly (local) media
reaction likely leads to a less lurid headline: “A demented troublemaker broke
a window while a group of solid citizens looked on.”

As Granovetter [8] pointed out by this example, it is hazardeous to infer indi-
vidual dispositions from aggregate outcomes.
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18 Chapter 2. Networks as a dynamical systems

Example: (Job rotation) We consider the orbit of the one-mode network under
F1 as described:

3

2

5

6

1

4

F1−→
3

2

5

6

1

4

F1−→
3

2

5

6

1

4

↑ F1 ↓ F1

3

2

5

6

1

4

F1←−
3

2

5

6

1

4

F1←−
3

2

5

6

1

4

Thus, the concrete values of the network attributes cycle.

Proposition 2.8 Let F : J → J be a total map, and let x, y ∈ J . Then, the orbits of x and
y under F are either disjoint or there exist k ∈ N and r ∈ Z such that Fk′(x) = Fk′+r(y)
for all k′ ≥ k.

Proof: Suppose the orbits of x and y are not disjoint, i.e., there are t, t′ ∈ N such that
Ft(x) = Ft′(y). Define r =def t

′− t. So, t′ = t+ r. Then, by induction on ` ∈ N, we easily
obtain that Ft+`(x) = Ft+r+`(y) for all ` ∈ N. Hence, setting k =def t and k′ =def t + `
proves the proposition.

Given some map F : J → J , all orbits under F are collected in the phase space. The
fundamental problem (in statistical mechanics) is getting knowledge on the probability
distribution over the phase space, i.e., to determine the visiting probablity of a certain
state (i.e., an element of J) in an orbit. The following concepts are essential for addressing
this question.

Definition 2.9 Let F : J → J be a total map.

1. A state x ∈ J is called fixed point of F if and only if F(x) = x.

2. A state x ∈ J is called periodic under F if and only if there exists a k ∈ N+ such
that Fk(x) = x. The number k0 ∈ N+ minimal subject to Fk0(x) = x is called the
periodic order of x, and x is then called periodic of order k0.

3. A state x ∈ J is called transient under F if and only if Fk(x) 6= x or all k ∈ N+,
i.e., x is not periodic.

Obviously, a fixed point is periodic of order one.
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Example: We discuss our examples in the light of Definition 2.9.

• (Link prediction) Each collection of complete graphs is a fixed point under the triadic-
closure map F. All other graphs are transient.

• (Riots) The number and shape of fixed points depend on individual thresholds. Let
A = {1, . . . , n} be a population with thresholds t1 ≤ t2 ≤ · · · ≤ tn. Note that
we may assume that all thresholds lie between 0 and n. We define t0 =def −1 and
tn+1 =def n+1. We say that there is a gap at k if and only if tk < k and tk+1 ≥ k+1.
Then, r = (ri)i∈A is a fixed point if and only if there is a gap at |r|1 (i.e., the number
of 1’s in r). All other states are transient.

• (Job rotation) In each network {x, π} and {y, π}, all states are periodic of order n.
Note that this depends on the assignments π which are part of the network.

The following proposition explains why recurring states are referred to as “periodic.”

Proposition 2.10 Let F : J → J be a total function. Let x ∈ J be periodic of order k0,
and let k ∈ N. Then, the following holds:

Fk(x) = x⇐⇒ k0 divides k

Proof: We prove both directions individually.

(⇐) Observe that x = Fk0(x) = Fk0(F k0(x)). An easy inductive argument shows that
x = Fc·k0(x) for all c ∈ N. Hence, if k0 divides k, i.e., k = c · k0 for some c ∈ N, then
Fk(x) = x.

(⇒) Case k = 0 is trivial. Now, suppose k ≥ k0 > 0. Then, k = c · k0 + r for uniquely
determined c ∈ N+ and r ∈ {0, 1, . . . , k0 − 1}. Thus,

x = Fk(x) = Fc·k0+r(x) = Fr(Fc·k0(x)) = Fr(x)

Since k0 is the smallest positive number with this property, it follows that r = 0.
Hence, k = c · k0. So, k0 divides k.

This proves the proposition.

Definition 2.11 Let F : J → J be a total mapping. Let x ∈ J be periodic of order k.
Then, the set {x,F(x),F2(x), . . . ,Fk−1(x)} is called an attractor (of length k) of F.

A fixed point is also called singleton attractor. In the literature, attractors are sometimes
also called limit cycle. However, in some notions, this involves certain additional stability
concepts (cf., e.g., [16]).

version v5.14 as of February 9, 2016



20 Chapter 2. Networks as a dynamical systems

Any easy consequence of Proposition 2.8 is that attractors are either disjoint or identical.

Corollary 2.12 Let F : J → J be a total map. If {x1, . . . , x`} and {y1, . . . , yr} are two
attractors of F such that {x1, . . . , x`} ∩ {y1, . . . , yr} 6= ∅ then {x1, . . . , x`} = {y1, . . . , yr}.

A finite network is a network where each attribute has a finite set of items and a finite
range. For finite networks, orbits have a simple structure.

Proposition 2.13 Let F : J → J be a map on a finite set J . Let (xi)i∈N be the orbit of
x0 ∈ J under F. Then, there are k0 ∈ N and `0 ∈ N+ such that

(i) {x0, . . . , xk0−1} is the set of k0 transient states of the orbit of x0 under F and

(ii) {xk0 , . . . , xk0+`0−1} is an attractor of length `0 of F.

Proof: Let (xi)i∈N be the orbit of x0 ∈ J under F, i.e., xi = Fi(x0). Since J is finite,
there are k ≥ 0 and ` > 0 such that Fk(x0) = xk = xk+` = Fk+`(x0). Define parameters
k0 and `0 as follows (in this order):

k0 =def min { k | Fk(x0) = Fk+r(x0) for some r > 0 }
`0 =def min { r | Fk(x0) = Fk0+r(x0) }

Then, for all r > 0, it holds that

Fk0+r(x0) = Fr
(
Fk0(x0)

)
= Fr

(
Fk0+`0(x0)

)
= Fk0+`0+r(x0).

Hence, xi is periodic of order `0 if i ≥ k0, which is tatement (ii), and xi is transient if
i < k0, which is statement (i). This proves the proposition.

2.2.2 Basins of attraction

In principle, iterated maps can be studied graph-theoretically. A total map F : J → J on
a finite set J can be associated with the directed graph Γ(F) = (J,E), called state graph
of F, where E =def { (x,F(x)) | x ∈ J }. Note that Γ(F) may have loops.

According to Proposition 2.8, Corollary 2.12, and Proposition 2.13, the state graph of F
can be uniquely decomposed into

• disjoint cycles C1, . . . , Ck (representing attractors) and

• disjoint (directed) trees T1, . . . , Tr (representing transient states) each of which is
incident with exactly one cycle C1, . . . Ck
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Example: (Link prediction) For n = 3, the state graph of F is as follows:

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Note that the state graph Γ(F) consists of 2(n2) = 2O(n2) graphs given the
interaction domain I = (A×A) \ { (i, i) | i ∈ A }.

Example: (Riots) We only consider a very small population A = {1, 2, 3}
with given thresholds t1 = 0, t2 = 1, and t3 = 2. Then, the state graph can
be visualized as follows (where participation of person i is described the i-th
letter):

0 0 0 1 0 0

0 1 0

0 0 1

1 1 0

1 0 1 1 1 1

0 1 1

Note that the state graph contains 2n vertices.

An attractor together with all its incident trees is called basin of attraction.

More formally, let F : J → J be a total map on a finite set J . A set E ⊆ J is called
invariant set if and only if for all k ∈ N, Fk(E) ⊆ E. Each invariant set contains an
attractor. So, J can be uniquely decomposed into r invariant sets where r is the number
of attractors of F. A basin of attraction is one component of this decomposition.
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22 Chapter 2. Networks as a dynamical systems

It is clear that transient states have visiting probability zero. The following proposition
gives the precise visiting probability of a periodic state in terms of the structure of its
corresponding basin of attraction.

Proposition 2.14 Let F : J → J be a total map on a finite, non-empty set J . Let x ∈ J
be periodic, and let E ⊆ J be the basin of attraction of (the attractor of) x. Suppose E
consists of s transient and r periodic states. Then, the visiting probability of x in a random
orbit is (

1 +
s

r

)
· 1

‖J‖
.

Proof: Let z ∈ J be an arbitrary state. Consider the orbit (zi)i∈N of z under F, i.e.,
z = z0 and Fk(z0) = zk for all k > 0. Suppose z0, . . . , zk0−1 are all transient states and
zk0 , . . . , zk0+r−1 are all periodic states (of order r). Suppose that x ∈ J is a state in the
orbit (zi)i∈N. Define

Px =def P [x is visited in (zi)i∈N] .

Then, Px is given by a frequency sequence of the initial segments of the orbit:

Px = lim
N→∞

‖{ i | i ∈ {0, 1, . . . , N − 1} and zi = x }‖
N

To calculate Px, we have two cases. If x is transient, then Px = 0 (since x occurs only
once on the orbit). If x is periodic of order r, then the frequency of visiting x in an initial
segment of length N approaches 1/r for increasing N . Now, consider a periodic x ∈ J
following the specification given in the proposition. Then, x lies on s + r orbits. So, the
visiting probability of x is

P[x is visited in some orbit] =
s+ r

‖J‖
· 1

r
=
(

1 +
s

r

)
· 1

‖J‖
.

This proves the proposition.

Example: We discuss our examples in the light of Proposition 2.14.

• (Link prediction) For n = 3, it is easily seen from the state graph that
all graphs containing no open triangle have equal visiting probability 1/8
while the complete graph has visiting probability 1/2. Indeed, we observe
that the basin of attraction of the complete graph contains s = 3 transient
and r = 1 periodic graphs.

• (Riots) In the scenario with the given thresholds, there is only one fixed
point attracting all initial states. Thus, this fixed point (i.e., all persons
join the riot) has visiting probability one. Indeed, there s = 2n − 1
transient states and r = 1 periodic states.
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• (Job rotation) In the networks {x, π} und {y, π}, there are no transient
states and all states have equal visiting probability 1/n in a corresponding
orbit. Note that the job-rotation map is not total as the values of x and y
are induced by the initial assignment π. As there are (n−1)! permutations
that are n-cycles, the visiting probability of an assignment in some orbit
is 1/n!.

2.3 Stochastic iterated network maps

In the following, we consider iterated random maps F : J → J . There are two sources of
randomness in dynamics: (a) a lack of information on parameters or values of attributes
involved in the map, and (b) the use of simulations.

A formal approach to iterated random maps is as follows (cf. [4]). Instead of just one map,
an iterated random map is understood as a family of functions, i.e., F = { fω | ω ∈ Ω }
where fω : J → J . Here, Ω is a probability space with a probability distribution µ on Ω.
For one step of the dynamics, this means that for x ∈ J , we choose an ω according to µ
and go to fω(x). In the simplest case, we may assume that µ does not depend on x. We
thus obtain a sequence of random variables:

X0 = x0, X1 = fω1(x0), X2 = fω2(fω1(x0)), . . . ;

inductively: Xn = fωn(Xn−1) where ω1, ω2, . . . are independent choices from Ω.

Example: (The psychology of conformity) Suppose we are given an interaction
domain I = { (i, j) | i, j ∈ A, i 6= j } for a set A = {1, . . . , n}. Consider a
network attribute x : I → {0, 1} which is fixed over time. For i ∈ A define
Nx(i) = { j ∈ A | xij 6= 0 }, i.e., the neighborhood of i in network x. We
are interested in the opinion attritbute o : A → {0, 1} which changes over
time according to the following local rule (cf. [10]): uniformly at random,
choose a directed edge (i, j) in the graph of the network x and set oi to oj .
Globally speaking, the more neighbors of an agent have the same opinion the
more likely the agent has the same opinion. This clearly describes an iteration
process of a random map in the above sense, i.e., we have a family of maps
F =def { f(i,j) | (i, j) ∈ E(x) } equipped with the uniform distribution on the
set of edges.

2.3.1 Markov chains

The formal approach of stochastic iterated network maps leads naturally to the concept
of Markov chains (cf., e.g., [9]).

version v5.14 as of February 9, 2016



24 Chapter 2. Networks as a dynamical systems

An infinite sequence (Xt)t∈N of random variables Xt : Ω → J , ‖J‖ = n, is called (homo-
geneous) Markov chain with finite state space J iff for all i, j ∈ J, z0, z1, . . . , zt−1 ∈ J ,

P [Xt+1 = j|Xt = i,Xt−1 = zt−1, . . . , X1 = z1, X0 = z0] = P[Xt+1 = j|Xt = i].

The matrix P ∈ Rn×n defined for all i, j ∈ J by

pij =def P[Xt+1 = j|Xt = i]

is called transition matrix. Note that P does not depend on t—the reason why the Markov
chain is homogeneous.

Example: (The psychology of conformity) In our example, the sequence of
opinions (o(t))t∈N is a homogeneous Markov chain since all the choices of
updating edges are independent and do not depend on t. More concretely,
let us consider three persons interacting asymmetrically in the following sense:
A = {1, 2, 3} is the set of agents, J = {0, 1}3 is the finite states space, and
network x is given by x1,2 = x2,1 = 1, x2,3 = x3,2 = 1, and x1,3 = x3,1 = 0.
That is, Nx(1) = {2}, Nx(2) = {1, 3}, and Nx(3) = {2}. So, agents 1 and 3 do
not directly communicate. We have four directed edges, each of which can be
chosen with probability 1/4.

We want to calculate transition probablities between states according to our
probabilistic update rule. It is clear that 000→ 000 and 111→ 111 with prob-
ability one. For state 001 ∈ J , we obtain the following transition probabilities
to the possible successor states:

001→ 000 : 1/4 edge (3, 2) has to be chosen

001→ 001 : 1/2 edges (1, 2) and (2, 1) have to be chosen

001→ 010 : 0 at most one agent can change her opinion

001→ 011 : 1/4 edge (2, 1) has to be chosen

001→ 100 : 0 at most one agent can change her opinion

001→ 101 : 0 no neighbor of agent 1 has opinion 1

001→ 110 : 0 at most one agent can change her opinion

001→ 111 : 0 at most one agent can change her opinion

Similarly, all other transition probabilities can be calculated.
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The transitions can be represented in 8×8 transition matrix P as follows (when
enumerating the state space in lexicographical order):

P =



1 0 0 0 0 0 0 0
1/4 1/2 0 1/4 0 0 0 0
1/2 0 0 1/4 0 0 1/4 0
0 1/4 0 1/2 0 0 0 1/4

1/4 0 0 0 1/2 0 1/4 0
0 1/4 0 0 1/4 0 0 1/2
0 0 0 0 1/4 0 1/2 1/4
0 0 0 0 0 0 0 1


Alternatively, Markov chains can be represented sparsely as a weighted graph,
where edge weights are just the probabilities:

Let (Xt)t∈N be a Markov chain over J , ‖J‖ = n. Then, the distribution q(t) = (q
(t)
1 , . . . , q

(t)
n )

of the Markov chain at time t satisfies for all i ∈ J ,

q
(t)
i = P[Xt = i];

q(0) is the initial distribution. A useful property of Markov chain is that the distribution
at time t are obtained as linear iterated map given by the transition matrix P .

Proposition 2.15 Let (Xt)t∈N be a Markov chain with state space J , initial distribution
q(0), and transition matrix P . For the distribution q(t) at time t, it holds that

q(t) = q(0)P t.

Proof: We prove the statement by induction on t.

• basis of induction t = 0: Trivial (with P 0 = I where I is the identiy matrix).

• inductive step t > 0: For t > 0 and j ∈ J , we calculate

q
(t)
j = P[Xt = j]

=

n∑
i=1

P[Xt = j|Xt−1 = i] ·P[Xt−1 = i] (law of total probability)

=

n∑
i=1

pij ·P[Xt−1 = i]

=

n∑
i=1

q
(t−1)
i · pij (by inductive assumption)

=
(
q(t−1)P

)
j

This proves the proposition.
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2.3.2 The stationary distribution

Definition 2.16 Let (Xt)t∈N be a Markov chain with state space J , ‖J‖ = n, and transi-
tion matrix P . A distribution π on J is said to be stationary if and only if π = π · P .

Example: (The pyschology of conformity) A stationary distribution in our
concrete example Markov chain has the form (q, 0, 0, 0, 0, 0, 0, 1−q) for 0 ≤ q ≤ 1.
No other distribution are stationary.

Definition 2.17 Let (Xt)t∈N be a Markov chain with state space J , ‖J‖ = n, and transi-
tion matrix P .

1. A state i ∈ J is said to be absorbing if and only if pij = 0 for all j 6= i.

2. A state i ∈ J is said to be transient if and only if

P[there exists t > 0 such that Xt = i|X0 = i] < 1.

3. A state i ∈ J is said to be recurrent if and only if

P[there exists t > 0 such that Xt = i|X0 = i] = 1.

The classification of the state in the psychology-of-conformity example above can be left
to the reader.

Definition 2.18 Let (Xt)t∈N be a Markov chain with state space J , ‖J‖ = n, and transi-
tion matrix P .

1. (Xt)t∈N is said to be irreducible if and only if for all i, j ∈ J , there exists a t > 0
such that (P t)ij > 0; otherwise, (Xt)t∈N is reducible.

2. The period d(i) for i ∈ J is defined as

d(i) =def gcd { t > 0 | (P t)ii > 0 }.

If d(i) = 1 then i is called aperiodic. (Xt)t∈N is said to be aperiodic if and only if
all states are aperiodic; otherwise, (Xt)t∈N is periodic.

3. (Xt)t∈N is said to be ergodic if and only if (Xt)t∈N is irreducible and aperiodic.

In other word, a Markov chain is irreducible if and only if the weighted graph of the
Markov chain is strongly connected. Each Markov chain with loops is aperiodic.
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We state the fundamental theorem for ergodic Markov chains without a proof (the inter-
ested reader is pointed to, e.g., [9]):

Theorem 2.19 For each ergodic Markov chain (Xt)t∈N, it holds that

lim
t→∞

q(t) = π

independently from the initial distribution q(0), where π is the unique stationary distribu-
tion of (Xt)t∈N.

Example: (The psychology of conformity) The Markov chain for the small
example is clearly not irreducible; however, it can be made ergodic by additing
a little random noise, i.e., instead of transition matrix P ∈ Rn×n, we consider
a perturbed matrix Pε,

Pε =def (1− ε) · P +
ε

n
· 1n×n,

where 1n×n denotes the n× n all-ones matrix. The Markov chain given by Pε
for 0 < ε < is always ergodic and, thus, has a unique stationary distribution.

For instance, for the Markov chain above we find as the stationary distribution
π = (π1, . . . , πn) for the matrix Pε:

π000 = π111 =
1

8
· 4 + ε− ε2

1 + 3ε

π001 = π011 = π100 = π110 =
1

8
· 5ε− ε2

1 + 3ε

π010 = π101 =
1

8
· ε

Observe that, when ε approaches zero, the limit of Pε is just P and the limit
of the stationary distribution is (1/2, 0, 0, 0, 0, 0, 0, 1/2) which is one stationary
distribution of P .
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Network formation 3

We investigate processes by which networks are formed in a stable manner via interaction
of rational agents. In the following, we use game theory to analyze such processes.

3.1 Strategic network formation and game theory

As we consider only numerical attributes, we restrict ourselves to the class of games with
utility functions.

3.1.1 Games with utilities

Definition 3.1 A game with utilities Γ is a triple (A, (S1, . . . , Sn), (u1, . . . , un)), where

1. A = {1, . . . , n} is a finite, non-empty set of agents,

2. Si is a non-empty set of strategies of agent i ∈ A, and

3. ui : S1 × · · · × Sn → R is a utility function for agent i.

According to the definition above, we introduce some notations:

• S =def

n

×
k=1

Sk denotes the set of all strategy profiles of all agents; S−i =def

n

×
k=1
k 6=i

Sk

denotes the set of all strategy profiles of all agents except agent i.

• For a strategy profile s = (s1, . . . , sn) ∈ S, let s−i denote the (n−1)-tuple consisting
of strategies of all agents except agent i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sn).

• So, s = (si, s−i) and S = Si × S−i, by convention.

• We use u = (u1, . . . , un) : S → Rn to denote the vector utility function, and we use
ui(s) = ui(s1, . . . , sn) = ui(si, s−i) to denote agent’s i utility of a strategy profile

We consider a game Γ as a one-shot non-cooperative game. Each agent u chooses a strategy
si ∈ Si independently of other agents and without knowing the choices of the other agents.
The result is a strategy profile s = (s1, . . . , sn). Each agent i evaluates strategy profile s
according to the utility function ui (or, receives payoff ui(s)).
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A notion central to game theory is the Nash equilibrium.

Definition 3.2 Let Γ = (A,S, u) be a game with utilities, involving n agents. A strategy
profile s∗ = (s∗1, . . . , s

∗
n) is called Nash equilibrium if and only if ui(s

∗
i , s
∗
−i) ≥ ui(si, s

∗
−i)

for all si ∈ Si and all i ∈ A.

Intuitively, in a Nash equilibrium, no agent has an incentive to deviate from the chosen
strategy. It captures one possible interpretation of a stable situation.

Example: We exemplify the notions for three standard games (only loosely
connected to networks).

• Battle of sexes: Male M and Female F want to spend time together, i.e.,
A = {M,F}. Alternatives are cinema (c) or football (f). So, the sets of
strategies for both are SM = SF = {c, f}. The set of strategy profiles is

S = SF × SM = { (c, c), (c, f), (f, c), (f, f) }

where the first component of a pair denotes Female’s strategy and the
second component is Male’s strategy. Now, on the one hand-side, Male
prefers football over cinema but together is better than alone. So, M ’s
preference can be described by the following utility function:

uM :

(f, f) 7→ 3

(c, c) 7→ 2

(c, f) 7→ 1

(f, c) 7→ 0

On the other hand-side, Female prefers cinema over football but together
is better than alone. So, F ’s utilities could be as follows:

uF :

(c, c) 7→ 3

(f, f) 7→ 2

(c, f) 7→ 1

(f, c) 7→ 0

Combined, both utility functions can be modelled as a payoff (bi-)matrix:

M

f c

F
f

c

(
(2, 3) (0, 0)

(1, 1) (3, 2)

)
Since all information on the game is contained in this representation, we
will also identify such a matrix with a 2-person game.
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Which strategy profiles are Nash equilibria? We examine all strategy
profiles individually:

– (c, c) is a Nash equilibrium, since

uF (c, c) = 3 > 0 = uF (f, c)

uM (c, c) = 2 > 1 = uM (c, f)

– (c, f) is not a Nash equilibrium, since

uF (c, f) = 1 < 2 = uF (f, f)

– (f, c) is not a Nash equilibrium, since

uM (f, c) = 0 < 3 = uM (f, f)

– (f, f) is a Nash equilibrium, since

uF (f, f) = 2 > 1 = uF (c, f)

uM (f, f) = 3 > 0 = uM (f, c)

Now, suppose Female is more decisive: she excludes football an option.
Thus, F ’s modified utility function leads to the following (bimatrix) game(

(1, 3) (0, 0)

(2, 1) (3, 2)

)
Then, the only Nash equilibrium is (c, c).

• Prisoner’s dilemma: Bonnie and Clyde have been captivated and charged
with bank robbery. However, the prosecutor is only able to prove illegal
possession of firearms to them; without confessions, the sentence will then
be 3 years in prison. If one of them makes a confession then the confessor
will be sentenced to one year and the non-confessor will be sentenced to
9 years in prison. If both confess then they will be sentenced to 7 years
in prison, respectively.

A game-based formulation of this decision scenario is given by the follow-
ing game with utilities:

s21 s22

s11

s12

(
(−7,−7) (−1,−9)

(−9,−1) (−3,−3)

)
where si1 stands for strategy “confession” and si2 stands for “no confes-
sion.”

Which strategy profiles are Nash equilibria?

– (s11, s21) is a Nash equilibrium, since

u1(s11, s21) = −7 > −9 = u1(s12, s21)

u2(s11, s21) = −7 > −9 = u2(s11, s22)
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– (s11, s22) is not a Nash equilibrium, since

u2(s11, s22) = −9 < −7 = u2(s11, s21)

– (s12, s21) is not a Nash equilibrium, since

u1(s12, s21) = −9 < −7 = u1(s11, s21)

– (s12, s22) is not a Nash equilibrium, since

u1(s12, s22) = −3 < −1 = u1(s11, s22)

Why is this game a dilemma? Because (s12, s21) would be a better strat-
egy profile for both. But it is no equilibrium; each agent could be better
off when changing the strategy. The reason for that is the lack of com-
munication and coordination.

• Rock-paper-scissor: The scenario consists of two players each of them
chooses one of the three gestures“rock”, “paper”, or“scissor”as a strategy.
The rules of winning the game are as follows:

– rock defeats scissor

– scissor defeats paper

– paper defeats rock

The loser of a game pays a unit to the winner. We can express this a
game with utilities by the following bimatrix game:

rock paper scissor

rock

paper

scissor

 (0, 0) (−1, 1) (1,−1)

(1,−1) (0, 0) (−1, 1)

(−1, 1) (1,−1) (0, 0)


Obviously, there is no Nash equilibrium for this game in pure strategies.

Example: Consider a group A = {1, . . . , n} of n persons being pairwise
friends. A person i ∈ A wants to spend time with each friend j ∈ A solely
but has only limited amount ti of spare time available. The problem is how to
distribute the time among the friends.

We formulate the problem as a game Γ = (A,S, u):

• A = {1, . . . , n}
• S = S1 × · · · × Sn where

Si =def { (si1, . . . , sin) | sij ≥ 0 and si1 + · · ·+ sin = ti }

• u = (u1, . . . , un) where

ui(s1, . . . , sn) =def

n∑
j=1
i 6=j

min{sij , sji}
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The interpretation of the utility function u is that the mutual time of two
persons depends on time reciprocally made available and time spended without
a friend is worthless. Persons aim at maximizing time with friends.

Which strategies are Nash equilibria? An easy analysis shows that each sym-
metrical strategy profile is a Nash equilibrium. A strategy profile s is sym-
metrical iff sij = sji for all i, j ∈ A. Indeed, let s = (s1, . . . , sn) ∈ S be a
symmetrical strategy profile, let i ∈ A, and let s′i ∈ Si. Then, we obtain,

ui(s
′
i, s−i) =

n∑
j=1
i 6=j

min{s′ij , sji} ≤
n∑

j=1
i6=j

sji =

n∑
j=1
i 6=j

min{sij , sji} = ui(si, s−i).

Among the symmetrical strategy profiles is the strategy profile where all per-
sons spend their time alone, which is of course highly stable as no person has
time for another person. Thus, in general, stability is not the only possible per-
spective on network formation. Another perspective is efficiency. For instance,
we could define “social welfare” of the friendship network as

U(s) =def

n∑
i=1

ui(s),

i.e., the total mutual time.

3.1.2 The best-response map

An alternative characterization of Nash equilibria can be given by best-response dynamics.

Definition 3.3 Let Γ = (A,S, u) be a game with utilities.

1. The best response (map) βi : S−i → P(Si) for agent i ∈ A is defined by

βi(s−i) =def

{
si ∈ Si

∣∣∣∣ ui(si, s−i) = max
s′i∈Si

ui(s
′
i, s−i)

}

2. The best response β : S → P (S1 × · · · × Sn) is defined by

β(s) =def β1(s−1)× · · · × βn(s−n).

Theorem 3.4 Let Γ = (A,S, u) be a game with utilities. For all s∗ ∈ S, it holds

s∗ is a Nash equilibrium ⇐⇒ s∗ ∈ β(s∗).
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Proof: Let s∗ ∈ S be a strategy profile. Then, the following chain of equivalences holds:

s∗ is a Nash equilibrium

⇐⇒ ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i) for all i ∈ A, si ∈ Si (by Definition 3.2)

⇐⇒ ui(s
∗
i , s
∗
−i) = max

si∈Si

ui(si, s
∗
−i) for all i ∈ A, si ∈ Si

⇐⇒ s∗i ∈ βi(s∗−i) for all i ∈ A (by Definition 3.3.1)

⇐⇒ s∗ ∈ β(s∗) (by Definition 3.3.2)

This proves the theorem.

Example: Consider the following payoff matrix for a two-person game with
identical utility function

s21 s22

s11

s12

(
1 3

1 2

)
The best responses for the agents are

β1(s21) = {s11, s12}, β1(s22) = {s11}
β2(s11) = {s22}, β2(s12) = {s22}

So, the best response is:

β(s11, s21) = {s11, s12} × {s22}
β(s11, s22) = {s11} × {s22}
β(s12, s21) = {s11, s12} × {s22}
β(s12, s22) = {s11} × {s22}

By Theorem 3.4, (s11, s22) is a unique Nash equilibrium.

3.1.3 The connections model

The connections model is a game-theoretic model for the formation of a static network
[11, 19]. We only consider the basic version of the model.

First, we define utility functions on given networks. Let A = {1, . . . , n} be a set of agents,
let I = A × A \ { (i, i) | i ∈ A } be the interaction domain, and let x : I → {0, 1} be a
network. Let G = G(x) be the undirected graph of network x. Each agent i ∈ A receives
payoff 0 < δ < 1 for each direct link in G. An agent i ∈ A additionally receives a payoff for
indirected links; this (exponentially decreasing) payoff is δd(i,j) where d(i, j) is the length
of a shortest path in G. Note that δd(i,j) = 0 for d(i, j) = ∞. Each agent i ∈ A pays a
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cost c > 0 for maintaining a directed link. We call (A, δ, c) a connection model. The utility
function ui(G) for graph G is thus given by:

ui(G) =
∑
i 6=j

δd(i,j) −
∑

{i,j}∈E(G)

c

Strategically, an agent could keep or drop an existing directed link to an agent. This affects,
however, both agents joint by the link. Thus, we need a notion of stability appropriate for
this situation.

Definition 3.5 Let (A, δ, c) be a connection model. An undirected graph G = (A,E) is
said to be stable if and only if the following conditions are fulfilled:

1. For all {i, j} ∈ E: ui(G) ≥ ui(G− {i, j}).

2. For all {i, j} /∈ E: ui(G+{i, j}−iG−jG) > ui(G)⇒ uj(G+{i, j}−iG−jG) < uj(G).

Here, kG denotes an edge set kG ⊆ { e ∈ E | k ∈ e } for k ∈ A.

Proposition 3.6 Let (A, δ, c) be a connection model. Then, a stable graph exists. Further,

1. if c ≥ δ then the empty graph is stable,

2. if c < δ and (δ − c) ≤ δ2 then a K1,n−1 is stable,

3. if c < δ and (δ − c) > δ2 then the Kn is stable.

Proof: We prove all cases individually.

1. Follows easily from ui(A, {i, j}) = δ − c ≤ 0 = ui(A, ∅).

2. Let G = (A,E) = K1,n−1. Let {i, j} ∈ E, i.e., i is the center of the star, j is a leaf.
Then, we have the following:

ui(K1,n−1) = δ · (n− 1)− c · (n− 1) = (δ − c) · (n− 1)

ui(K1,n−1 − {i, j}) = δ · (n− 2)− c · (n− 2) = (δ − c) · (n− 2)

uj(K1,n−1) = δ − c+ δ2 · (n− 2)

uj(K1,n−1 − {i, j}) = 0

Since δ − c > 0, we obtain the inequalities ui(K1,n−1) ≥ ui(K1,n−1 − {i, j}) and
uj(K1,n−1) ≥ uj(K1,n−1 − {i, j}), i.e., the first condition of stability is satisfied.
Now, let {i, j} /∈ E, i.e., i and j are leaves in graph G. Notice that this implies
n ≥ 3. Then, we obtain:

ui(K1,n−1 + {i, j} − iG− jG) ≤ ui(K1,n−1 + {i, j}) (since δ > c)

= 2δ + δ2 · (n− 3)− 2c

≤ δ − c+ δ2 · (n− 2) (since δ − c ≤ δ2)
= ui(K1,n−1)
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Hence, the second condition of stability is satisfied. Therefore, K1,n−1 is stable.

3. Follows easily from ui(K
n) = (δ−c) · (n−1) > (δ−c) · (n−2)+δ2 = ui(K

n−{i, j}).

This proves the proposition.

We want to study whether and which stable networks are reached in a dynamic network
formation model Let (A, δ, c) be some connection model. Initially, the graph G = G0 is
empty. We consider discrete time steps T = N+ and a sequence (Gt)t∈T of graphs. The
agents are assumed to be myopic, i.e., they make decisions as better responses, if possible.
More specifically, choose a dyad {i, j} uniformly at random at each time step t ∈ T :

• if {i, j} ∈ E(Gt−1) then either i or j can sever the link

• if {i, j} /∈ E(Gt−1) then i and j can form a link {i, j} and simultaneously sever any
of their other links, if both agents agree.

Proposition 3.7 Let (A, δ, c) be a connection model. In the network formation process,

1. if (δ − c) > δ2 > 0 then every link forms and remains,

2. if δ − c < 0 then no link ever forms.

Proof: We give individual arguments for both statements.

1. Assume δ − c > δ2. That is, δ − c > δ2 > δ3 > · · · > δn−1. Thus, each agent
prefers a direct link over any indirect link. Suppose i and j are chosen in step t: if
{i, j} /∈ E(Gt−1) then each agent gains at least δ − c− δdGt−1

(i,j) > 0 from forming
a link; if {i, j} ∈ E(Gt−1) then, severing the link, an agent’s utlity decreases. Thus,
a direct link is never broken.

2. Since the graph is initially empty, forming the first link gives payoff δ − c < 0, so
will never be formed.

This proves the proposition.

Corollary 3.8 Let (A, δ, c) be a connection model. Then, the following holds:

1. If δ − c > δ2 then the network formation process converges to Kn.

2. If δ − c < 0 then the network formation process converges to the empty graph.
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The remaining case is covered by the following proposition, the proof of which can be
found in [19].

Proposition 3.9 Let (A, δ, c) be a connection model, ‖A‖ ≥ 4. Suppose 0 < δ − c < δ2.
Then,

0 < P[sequence (Gt)t∈T converges to a K1,n−1] = O( 1
n).

3.2 Strategic network formation with structural holes

3.2.1 Bridges and structural holes

3.2.2 The model

In the forthcoming, we study a formulation of strategic network formation with structural
holes based on game theory [12].

Let A = {1, . . . , n} be a set of agents. Let S = S1× · · ·×Sn be the set of strategy profiles
where

Si = P({ (i, j) | j ∈ A \ {i} }),

for each i ∈ A, i.e., i’s strategy is basically a set of selected persons; here, friendship
is considered as a directed relationship which needs not necessarily be mutually con-
firmed. Let ci,j ≥ 0 denote agent i’s cost of buying a link to agent j. The utility function
u = (u1, . . . , un) is given as follows for each i ∈ A:

ui(s1, . . . , sn) =def α0 · (‖si‖+ { j | (j, i) ∈ sj }‖) +
∑

(i,j),(i,k)∈si
j 6=k

β(rj,k)−
∑

(i,j)∈si

ci,j ,

where α0 ≥ 0 is the benefit of a direct link, β is a decreasing, non-negative function
representing the intermediary benefit of each agent in the middle of a length-2 path, and
rj,k is the number of length-2 paths (we set rj,k = 0 if there is a direct link between j and
k in either direction) in the underlying undirected graph induced by the strategies of the
agents.

3.2.3 Existence of equilibria

We want to analyze how possible equilibrium networks look like and whether equilibria
exist at all. We first identify a (sub-)class of equilibrium graphs of specific directed,
multipartite structure: let q = bn/kc for number n of vertices, number k of parties, i.e.,
there are q independent sets of size k, and one independent set of size l ≡ nmod k. Then,
Gn,k is a complete, multipartite graph with vertex set

V = V1 ∪ V2 ∪ · · · ∪ Vq ∪ Vq+1
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where Vi ∩ Vj 6= ∅ for i 6= j, ‖V1‖ = · · · = ‖Vq‖ = k, ‖Vq+1‖ = l, and edge set

E =def { (u, v) | u ∈ Vi, v ∈ Vj , and j < i },

i.e., all edges are directed from higher-number parties to lower-number parties.

Lemma 3.10 Let G = (V,E) be an undirected graph containing an independent set I ⊆ V
of size k such that all vertices v /∈ I are adjacent to all vertices i.

1. The change in utility for vertex v /∈ I from deleting all edges to I is

B(n, k) =def k · (α0 − 1) +

(
k

2

)
β(n− k).

2. If B(n, k) ≥ 0 then vertex v /∈ I will keep all edges to I.

3. If B(n, k) < 0 then vertex v /∈ I will drop all edges to I.

Proof: To prove the first statement, we calculate the total value of all edges to I. The
benefit of direct links is k · (α0 − 1), the intermediary benefit for a single pair of vertices
in i is β(n− k). Thus, the overall value is

k · (α0 − 1) +

(
k

2

)
· β(n− k) def = B(n, k)

For the second and the third statements, suppose v /∈ I has edges to some set A ⊆ I of
size k′. Then, the value of these edges is

k′ · (α0 − 1) +

(
k′

2

)
· β(n− k)

which is maximized for k′ = 0 or k′ = k (as it is a convex function in k′). The statements
follow. This proves the lemma.

Theorem 3.11 For each set of n agents there exists a k ∈ N+ such that the graph Gn,k
is a Nash equilibrium.

Proof: We make a case distinction. If B(n, 1) = α0 − 1 ≥ 0 then α0 ≥ 1 and the
complete graph Gn,1 is a Nash equilibrium (by Lemma 3.10.2). If B(n, n − 1) < 0 then
the empty graph Gn,n is a Nash equilibrium (by Lemma 3.10.3). If B(n, 1) < 0 and
B(n, n− 1) ≥ 0 there exists a number ksuch that B(n, k) ≥ 0 and B(n, k − 1) < 0. Since
Gn,k is a complete, multipartite, agent i ∈ Vj cannot gain intermediary benefit from V`,
` 6= i, by only connecting from inside Vj . Since B(n, k) ≥ 0, agent i keeps all edges to V`
for ` < j. Since B(n, k − 1) < 0, agent i will have no edges to Vj \ {i}. Thus, Gn,k is a
Nash equilibrium. This proves the theorem.

Theorem 3.12 For every choice of α0 > 0 and function β such that β(r) ≥ γ · r−1 for
some constant γ > 0, every equilibrium graph has at least Ω(n2) edges.
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3.3 Network congestion and potential games

In the following, we should have a traffic scenario in mind. Suppose we are given a
circuit graph C4 with vertex set V = {A,B,C,D} and edge set consisting of the edges
{A,B}, {B,C}, {C,D}, and {D,A}. Furthermore, suppose an agent located in A wishes
to select a shortest route to D and an agent sitting in B wishes to select a shortest route to
C. If both agents use the same link then the congestion (or latency) increases. Of course,
the agents aim at minimizing their cost. In the scenario, it is certainly interesting to know
which traffic network x is stable and whether there always stable networks. Note that the
network attribute x (on the interaction domain C4) is formed by the number of agents
use the same link. Such scenarios with strategic agents can be studied using the notion of
potential games as introduced by Monderer and Shapley [15]. This is an important class
of games with equilibrium guarantee.

3.3.1 Potential functions

Definition 3.13 Let Γ = (A,S, u) be a game with utilities, and let P : S → R be any
function.

1. P is said to be an ordinal potential function for Γ if and only if for all i ∈ A,
s−i ∈ S−i, si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) > 0 ⇐⇒ P (si, s−i)− P (s̄i, s−i) > 0.

Γ is said to be an ordinal potential game if and only if there is an ordinal potential
function for Γ.

2. P is said to be a potential function for Γ if and only if for all i ∈ A, s−i ∈ S−i,
si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) = P (si, s−i)− P (s̄i, s−i).

Γ is said to be a potential game if and only if there is a potential function for Γ.

Example: We discuss the notions for two games.

• Consider the following bimatrix game:

Γ =

(
(0, 3) (1, 2)

(3, 1) (2, 0)

)
According to Definition 3.13, it suffices to consider the following differ-
ences:

u1(s11, s21)− u1(s12, s21) = −3

u1(s11, s22)− u1(s12, s22) = −1

u2(s11, s21)− u2(s11, s22) = 1

u2(s12, s21)− u2(s12, s22) = 1
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Then, Γ is an ordinal potential game. An ordinal potential function P is
represented by the matrix

Γ =

(
1 0

2 1

)
,

since

P (s11, s21)− P (s12, s21) = −1 < 0

P (s11, s22)− P (s12, s22) = −1 < 0

P (s11, s21)− P (s11, s22) = 1 > 0

P (s12, s21)− P (s12, s22) = 1 > 0

However, Γ is not a potential game. (An explanation will be given later.)

• Recall that the prisoner’s dilemma can be represent by the following bima-
trix game:

Γ =

(
(−7,−7) (−1,−9)

(−9,−1) (−3,−3)

)
Γ is a potential game, where the potential function P is given by

P =

(
4 2

2 0

)
.

Proposition 3.14 Let Γ = (A,S, u) be a game with utilities and an ordinal potential
function P , and let s∗ ∈ S. Then, s∗ is a Nash equilibrium if and only if for all i ∈ A and
si ∈ Si, it holds that

P (s∗) ≥ P (si, s
∗
−i).

Proof: Immediate from Definition 3.13.

Corollary 3.15 Each finite ordinal potential game has a Nash equilibrium.

Proof: For a finite ordinal potential game Γ, it’s ordinal potential funciton P has a
maximum. Let s∗ ∈ S be such that P (s∗) is maximum. Then, s∗ is a Nash equilibrium
by Proposition 3.14.

Though we have a certain flexibility in choosing an ordinal potential for an ordinal potential
game, in case of exact potentials it is less so: they are unique up to some additive constant.

Proposition 3.16 Let Γ = (A,S, u) be a potential game with potentials P1 and P2. Then,
there is a c ∈ R such that for all s ∈ S,

P1(s)− P2(s) = c
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Proof: Choose any s∗ ∈ S. Define for all s ∈ S,

H(s) =def

m∑
i=1

(
ui(t

i−1 − ui(ti)
)
,

where t0 = s and ti = (s∗i , t
i−1
−i ) for i ∈ {1, . . . ,m}. For each potential P for Γ we have

H(s) =

m∑
i=1

(
ui(t

i−1)− ui(ti)
)

=

m∑
i=1

(
P (ti−1)− P (ti)

)
= P (t0)− P (tm) = P (s)− P (s∗).

Hence,

P1(s)− P2(s) = H(s) + P1(s
∗)− (H(s) + P2(s

∗)) = P1(s
∗)− P2(s

∗).

The last difference is constant. This proves the proposition.

3.3.2 Characterizations of potential games

How can we decide whether a given game with utilites is, in fact, a potential game? To
answer this question, we give a characterization based on the structure of utility functions.
It is helpful to introduce some additional notions.

Let Γ = (A,S, u) be a game with utilites.

A sequence p = (s0, s1, . . . , sN ) is a path in Γ if and only if for all k ≥ 1, there is an i ∈ A
such that sk = (si, s

k−1
−i ) for some si ∈ Si with si 6= sk−1i . The agent i ∈ A is then called

the deviator for k. A path p = (s0, s1, . . . , sN ) is said to be closed iff s0 = sN . A path
p = (s0, s1, . . . , sN ) is said to be simple iff sj 6= sk for all 0 ≤ j < k ≤ N − 1.

Furthermore, for a finite path p = (s0, s, . . . , sN ) in Γ, define

I(Γ, p) =def

N∑
k=1

(
uik(sk)− uik(sk−1)

)
,

where ik is the deviator for k.

Theorem 3.17 Let Γ = (A,S, u) be a game with utilities. The following statements are
equivalent:

1. Γ is a potential game.

2. I(Γ, p) = 0 for each finite, closed path p in Γ.

3. I(Γ, p) = 0 for each finite, simple, closed path p in Γ.

4. I(Γ, p) = 0 for each finite, simple, closed path p in Γ of length 4.
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Proof: We show the following implications:

• (1) ⇒ (2): Let P be a potential function for Γ = (A,S, u). Let p = (s0, s1, . . . , sN )
be a closed path. Then, we conclude

I(Γ, p) =
N∑
k=1

(
uik(sk)− uik(sk−1)

)

=
N∑
k=1

(
P (sk)− P (sk−1)

)
(since P is a potential function for Γ)

= P (sN )− P (s0)

= 0 (since sN = s0)

• (2)⇒ (1): Fix an arbitrary strategy profile z ∈ S. For s ∈ S, let p(s) = (s0, . . . , sN )
denote an arbitrary path from s0 = z to sN = s. We define

P (s) =def I(Γ, p(s)).

Note that there is always a path from z to a strategy profile s. We have to show
that the following two statements are true:

1. P is well-defined, i.e., the definition of P is independent of the choice of the
path p(s).

2. P is a potential function for Γ

This can be seen as follows:

1. Let q(s) = (s0, . . . tM ) be another path such that t0 = z and tM = s. Then, the
concatenated path γ = (s0, . . . , sN , tM−1, . . . , t0) is a closed path in Γ. By our
assumption, it holds that I(Γ, γ) = 0. We conclude

I(Γ, p(s)) = −I
(
Γ, (sN , tM−1, . . . , t0)

)
= I

(
Γ, (t0, . . . , tM−1, sN )

)
= I(Γ, q(s))

2. For i ∈ A, let si, s
′
i ∈ Si be two strategies, let s−i ∈ S−i. Again by our

assumption, we obtain

0 = I
(
Γ,
(
(si, s−i), . . . , z, . . . , (s

′
i, s−i), (si, s−i)

))
= I (Γ, ((si, s−i), . . . , z)) + I

(
Γ,
(
z, . . . , (s′i, s−i), (si, s−i)

))
= −I (Γ, (z, . . . , (si, s−i))) + I

(
Γ,
(
z, . . . , (s′i, s−i)

))
+

+ ui(si, s−i)− ui(s′i, s−i)

Consequently,

ui(si, s−i)− ui(s′i, s−i) = I(Γ, (z, . . . , (si, s−i)))− I(Γ, (z, . . . , (s′i, s−i)))

= P (si, s−i)− P (s′i, s−i)

Hence, P is a potential function.
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• (2)⇒ (3): Trivial.

• (3)⇒ (4): Trivial.

• (4) ⇒ (2): Suppose I(Γ, p) = 0 for all simple, closed paths p of length 4 in
Γ = (A,S, u). We show that I(Γ, p) = 0 for all closed paths p of length N in Γ
by induction on N :

– base of induction N ≤ 4: Cases N ∈ {1, 2, 3} are trivial (in particular, there
are no closed paths of odd lengths); for N = 4, the statement holds by the
assumption.

– inductive step N > 4: Let p = (s0, s1, . . . , sN ) be a closed path with N ≥ 5. Let
(i1, . . . , iN ) be the sequence of deviators for each step, i.e., sj = (sij , s

j−1
−ij ) such

that sij 6= sj−1ij
. Without loss of generality, assume i1 = 1. Since sN = s0, there

is 2 ≤ j ≤ N such that ij = 1 and sjij = s01. Choose j to be minimal subject to

this condition, i.e., there is no 2 ≤ k < j satisfying ik = 1 and skik = s01.

First, suppose j = 2. That is, s2 = s0. Consider the path q =def (s2, . . . , sN )
of length N − 1. Then,

I(Γ, p) = I(Γ, q) + u1(s
2)− u1(s1) + u1(s

1)− u1(s0)
= u1(s

2)− u1(s0) (by inductive assumption)

= 0 (since s2 = s0)

Now, suppose j ≥ 3, i.e, j ∈ {3, . . . , N}. Then, we have two subcases:

1. Subcase ij−1 = ij . Consider path q =def (s0, . . . , sj−2, sj , . . . , sN ). It holds

I(Γ, q)

= I
(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−2) + I
(
Γ, (sj , . . . , sN )

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−1) +

+ uij (s
j−1)− uij (sj−2) + I

(
Γ, (sj , . . . , sN )

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−1) +

+ uij−1(sj−1)− uij−1(sj−2) + I
(
Γ, (sj , . . . , sN )

)
(since ij−1 = ij)

= I
(
Γ, (s0, . . . , sj−2, sj−1, sj , . . . , sN )

)
= I(Γ, p)

Thus, by the inductive assumption, I(Γ, p) = I(Γ, q) = 0.

2. Subcase ij−1 6= ij . That is, we have the following scenario: ... Define a path

qj = def(s0, . . . , sj−2, tj−1, sj , . . . , sN ) where tj−1 = (sij , s
j−2
−ij ), i.e., the

deviator in (j − 1)-st step is 1. Now, path r =def (sj−2, tj−1, sj , sj−1, sj−2)
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is simple (since ij 6= ij−1), closed, and has length 4. Hence, I(Γ, r) = 0.
That is,

I
(
Γ, (sj−2, sj−1, sj)

)
= I

(
Γ, (sj−2, tj−1, sj)

)
.

Therefore, I(Γ, p) = I(Γ, qj).
Recursively repeated, we obtain a sequence of paths qj , qj−1, . . . , q3 such
that I(Γ, p) = I(Γ, qk) for all k ∈ {3, . . . , j} and the deviator in qk’s step
k − 1 is 1. The path q3 corresponds to the case j = 2 above. Thus,

I(Γ, p) = I(Γ, q3) = 0.

This proves the theorem.

We want to characterize potential games from a dynamical perspective.

Let Γ = (A,S, u) be a game with utilities. Let (st)t∈I be any finite or infinite sequence
of strategy profiles, i.e., I = N or I = {0, 1, . . . , n} for some n ∈ N. Then, the sequence
(st)t∈I is called an improvement path if and only if for all t ∈ I, t > 0, there is an i ∈ A
such that st 6= st−1, (st)−i = (st−1)−i, and ui(s

t) > ui(s
t−1). The intuition behind this

definition is that each deviator choose a better alternative. Γ is said to have the Finite
Improvement Property (FIP) if and only if every improvement path is finite.

To establish our characterization, some technical limitations on games are required: A
game Γ = (A,S, u) is called degenerate iff there exist i ∈ A, si, s

′
i ∈ Si, si 6= s′i, and

s−i ∈ S−i such that ui(si, s−i) = ui(s
′
i, s−i); otherwise, Γ is called nondegenerate.

Theorem 3.18 Let Γ be a finite, nondegenerate game with utilities. Then, Γ has the FIP
if and only Γ is an ordinal potential game.

Proof:

(⇐): Let Γ = (A,S, u) be a finite game with ordinal potential function P , i.e., for all
i ∈ A, si, s

′
i ∈ Si, s−i ∈ S−i,

ui(s
′
i, s−i) ≥ ui(si, s−i)⇐⇒ P (si, s−i) ≥ P (s′i, s−i).

Let γ = (s0, s1, s2, . . . ) be an improvement path, and let (i1, i2, . . . ) be the sequence
of γ’s deviators. Then, for all t ∈ I, t > 0, it holds that uit(s

t) > uit(s
t−1). Hence,

P (s0) < P (s1) < P (s2) < . . . . As S is a finite set, γ = (s0, s1, s2, . . . ) is a finite
sequence, i.e., ‖I‖ <∞.

(⇒): Let Γ = (A,S, u) have the FIP. Define a binary relation > on S:

s > s′ ⇐⇒def s 6= s′ and there is an improvement path from s to s′

Since Γ has the FIP, > is a strict order relation on S, i.e., > is irreflexive and
transitive. Any finite strict order can be represented by a function: A set Z ⊆ S
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is represented iff there is a mapping Q : Z → R such that for all s, s′ ∈ Z, s > s′

implies Q(s) > Q(S′). Let Z∗ be a maximal, represented subset of S.

We show Z∗ = S. To the contrary, assume there is an x ∈ S, x /∈ Z∗. Then, there
are three (possibly overlapping) cases:

1. There is no z ∈ Z∗ such that z > x. Define an extension Q′ : Z∗ ∪{x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
max{ Q(z) | z ∈ Z∗ }+ 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

2. There is no z ∈ Z∗ such that z < x. Dually to the first case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
min{ Q(z) | z ∈ Z∗ } − 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

3. For some z, z′ ∈ Z∗, it holds that z > x > z′. In this case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
1
2 (max{ Q(z) | z < x }+ min{ Q(z) | z > x }) if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

Therefore, Z∗ = S.

Let Q represent S. Then, Q is an ordinal potential function: Suppose si, s
′
i ∈ Si,

s−i ∈ S−i. Then, ui(si, s−i) 6= ui(s
′
i, s−i) since Γ is nondegenerate. So, without loss

of generality, ui(si, s−i) > ui(s
′
i, s−i). Thus, (si, s−i) > (s′i, s−i). (Note there is an

improvement path of length one.) Hence, Q(si, s−i) > Q(s′i, s−i).

This proves the theorem.

3.3.3 Congestion games

We come back to the traffic scenario that motivates the study of potential games. A
game-theoretic formulation of such scenarios is known as congestion games (introduced in
economics in [18].)

We can analyze this scenario as a game with utilities

Γ =def ({A, B}, {{1, 2}, {3, 4}} × {{1, 3}, {2, 4}}, u)
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where the utility function u = (u1, u2) is given by the following bimatrix:

{1, 3} {2, 4}

{1, 2}
{3, 4}

(
(c1(2) + c2(1), c1(2) + c3(1)) (c1(1) + c2(2), c2(2) + c4(1))

(c3(2) + c4(1), c1(1) + c3(2)) (c3(1) + c4(2), c2(1) + c4(2))

)

There are two simple, closed paths of length 4 in the game Γ. So, let p be the one in
counter-clockwise direction starting with the upper left strategy profile corner, and let q
be the one in clockwise direction also starting with the upper left strategy profile corner.
It holds that

I(Γ, p) = c3(2) + c4(1)− c1(2)− c2(1)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c2(1) + c4(2)− c1(1)− c3(2) +

+ c1(1) + c2(2)− c3(1)− c4(2)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c1(2) + c3(1)− c2(2)− c4(1)

= 0

Since I(Γ, q) = −I(Γ, p) = 0, we obtain from Theorem 3.17 that Γ is a potential game.

Definition 3.19 A congestion model is a tuple (A,F, (Si)i∈A, (wf )f∈F ) such that

1. A = {1, . . . , n} is a non-empty, finite set of agents (routers),

2. F is a non-empty, finite set of facilities (links),

3. Si ⊆ P(F ) is a non-empty set of strategies (routes) for each agent i ∈ A, and

4. wf : {1, . . . , n} → R is a cost (wealth, latency) function for each facility f ∈ F ; if k
agents choose f then the cost for each agent is wf (k).

Definition 3.20 Let (A,F, (Si)i∈A, (wf )f∈F ) be a congestion model. Then,
Γ = (A, (Si)i∈A, u) is called congestion game if and only if for all i ∈ A, s = (si, s−i) ∈ S,

ui(s) =
∑
f∈si

wf (σf (s)),

where σf (s) = ‖{i ∈ A|f ∈ si}‖.

Without proof we state the following theorem which shows that potential games and
congestion games are essentially the same class of finite games.

Theorem 3.21 1. Each congestion game is a potential game.

2. Each potential game is isomorphic to a congestion game.
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The proof of the first statement relies on the Rosenthal potential:

P (s) =def

∑
f∈

⋃
i∈A si

σf (s)∑
k=1

wf (k)
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Opinion Formation 4

4.1 Attitudes and attitude change

An attitude is a positive, negative, or mixed reaction to a person, object, or idea. Attitudes
are (often) measured using (multi-item) questionnaires known as attitude scales, e.g., Likert
scales. Note that attitude scales are based on the principle of forced choices. An opinion
is the result of selecting a value from an attribute range D, i.e., o : A→ R is a behavioral
attribute. In other words, an opinion oi ∈ R of actor i ∈ A is the state of i in the
population A. Note that opinions are specific for an experimental design.

In the forthcoming, we consider attitude change by persuasive communication. Among
the many models developped in social psychology, a standard model is the Elaboration
Likelihood Model (ELM), a dual-process model by Petty and Cacioppo [17]. It makes an
antagonistic distinction between two ways to persuasion depending on the so-called need
for cognition of an audience receiving a message from a source:

• central route to persuasion: actor thinks carefully about a communication and is
influenced by the strength of its arguments.

• peripheral route to persuasion: actor does not think carefully about a communication
and is influenced by superficial cues.

Typically, persuasive communication varies between these antagonistic poles, thus forming
a spectre of routes. Models of opinion dynamics implement mechanisms of interdependent
influence by persuasive communication affecting opinion changes, and by this presumably
attitude changes, of the actors.

4.2 Reaching a Consensus

The basic mechanism in opinion formation is consensus dynamics. For instance, consider
a group of n individuals who must act together as a team or committee. Each individual
in the group has an opinion oi (or, more generally, a subjective probability distribution
depending on some paramter ϑ). The question is: when and how does the group reach a
consensus, i.e., an opinion profile o = (o1, . . . , on) satisfying o1 = · · · = on?

A baseline model that, on the one hand-side, aims at explanation for consensus and, on
the other hand-side, can be used as a protocol for reaching a consensus was proposed by
DeGroot [3].
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4.2.1 Consensus in opinion pools

An opinion pool is basically an iterated map P : RA → RA, i.e., given an opinion profile
o, P (o) is the updated opinion profile. Classic opinion pools are the linear opinion pools
[5, 3], which describe the opinion profile for all actors after k rounds of opinion updates
as a weighted average:

o
(k+1)
i =def

n∑
j=1

pijo
(k)
j

for 1 ≤ i ≤ n, k ≥ 0, pij ≥ 0, and
∑n

j=1 pij = 1. Further types of opinion pools have been
studied since then, e.g., g-quasi-linear opinion pools or logarithmic opinion pools (cf., e.g.,
[7, 13]). We only consider linear opinion pools.

A linear opinion pool can be represented by a matrix P ∈ Rn×n where entries are exactly
the weights pij of the opinion pool. Thus, the iteration of P induces orbits on initial
opinions o(0) which can be describe by matrix multiplication:

o(k) = P · o(k−1) = P 2 · o(k−2) = · · · = P k · o(0)

Definition 4.1 Let A = {1, . . . , n} be a set of actors, P ∈ Rn×n be a linear opinion pool,
and o(0) be some initial opinion profile. An opinion o∗ ∈ R is said to be a consensus for
P and o(0) if and only if for all i ∈ A,

lim
k→∞

o
(k)
i = o∗.

That is, in order to obtain a consensus, all individual opinion orbits must converge to the
same opinion. It easily follows that a consensus profile (o∗, . . . , o∗) is a fixed point for P .
This leads to the question of which conditions must be satisfied by P to guarantee the
existence of a consensus no matter which initial opinion profile is given.

Proposition 4.2 Let A = {1, . . . , n} be a set of actors and let P ∈ Rn×n be a linear
opinion pool. For all initial opinion profiles o(0), there exists a consensus o∗ (depending
on the initial opinion profile) if and only if there exists a vector π = (π1, . . . , πn) such that
limk→∞(P k)ij = πj for all i ∈ A. In case that the latter condition is true, the consensus

is given by o∗ =
∑n

i=1 πio
(0)
i .

Note that the criterion given in the proposition is not true if we fix some initial opinion
profile. Though the criterion remains sufficient for the existence of a consensus, it is no
longer necessary. For instance, the all-zero vector (0, . . . , 0) is a consensus profile for each
matrix P . For a given initial opinion profile there are characterizations of the existence
of consensus profiles depending on both the linear opinion pool P and the initial opinion
profile (see [1]). We now prove Proposition 4.2 (with credits to Julian Vill).
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Proof: The direction (⇐) is easily seen by the specification of the consensus profile. For
(⇒), assume that all orbits converge into a consensus profile, i.e., for all initial opinion

profiles o(0), we have limk→∞ o
(k)
i = limk→∞

(
P k · o(0)

)
i

= o∗ for some o∗ and all i ∈ A.
Hence, for each opinion profile x, it holds that

lim
k→∞

(
P k · x

)
r

= lim
k→∞

(
P k · x

)
s

(4.1)

for all r, s ∈ A. Let ej denote the opinion profile where all opinions are set to zero except
those for actor j which is set to one. So, P k · ej is just the j-th column of the matrix P k.
Since limk→∞

(
P k · ej

)
=
(
limk→∞ P

k
)
·ej , we obtain from Eq. (4.1) that all entries in the

j-th column of the limit matrix are equal. Define πj =def limk→∞
(
P k · ej

)
1
. It follows

that for all i, j ∈ A,

πj = lim
k→∞

(
P k · ej

)
1

= lim
k→∞

(
P k · ej

)
i

= lim
k→∞

(P k)ij

This proves the proposition.

4.2.2 Conditions of convergence

In the light of Proposition 4.2 we are interested in further criteria for convergence to
consensus. Since P satisfies

∑n
j=1 pij = 1, P is a stochastic matrix describing a Markov

chain. Then, pij is simply the probability that agent i adopts the opinion of agent j.

The following theorem which is stated without a proof is representative for results origi-
nating in the analysis of stationary distributions and mixing behavior of Markov chains.

Theorem 4.3 Let P ∈ Rn×n be a linear opinion pool. If there exists a k ∈ N+ such that
every element in at least one column of P k is positive then a consensus will be reached.

Example: Suppose we have a group of n = 2 agents, and

P =

(
1/2 1/2
1/4 3/4

)
According to the theorem above, a consensus will be reached. Indeed, the
stationary distribution is calculated via

π1 =
1

2
· π1 +

1

4
· π2

π2 =
1

2
· π1 +

3

4
· π2

So, π = (1/3, 2/3)T and the consensus is 1/3 · o1 + 2/3 · o2.
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Now, suppose a third individual joins the group, so that

P =

1/2 1/2 0
1/4 3/4 0
1/3 1/3 1/3


Here, the stationary distribution is (1/3, 2/3, 0), so the third individual has no
weight in the consensus.

4.3 The Friedkin-Johnsen model

So far, it is assumed that no outside data, observations, or information is available, i.e., we
studied completely endogenous dynamics. Now, consider the following generalized linear
model described by an opinion orbit (as proposed by Friedkin and Johnsen [6]):

o(0) = X0B0 where

X0 ∈ Rn×m represents weighted influence of m exogenous variables

B0 ∈ Rm×1 represents values of m exogenous variables

and for k > 0,

o(k) = αkWko
(k−1) + βkXkBk where

Xk ∈ Rn×m, Bk ∈ Rm×1 have the same meaning as above

Wk ∈ Rn×n represents the network of influence

(where 0 ≤ w(k)
ij ≤ 1 and

∑n
j=1w

(k)
ij = 1)

αk ∈ R represents a weight on the endogenous conditions

βk ∈ R represents a weight on the exogenous conditions

So, in the general model, for each time step we have different influences of the variables and
in the networks. This makes the model almost unanalyzable. If we impose the homogeneity
assumptions

X0 = X1 = X2 = · · · = X

B0 = B1 = B2 = · · · = B

W1 = W2 = · · · = W

α1 = α2 = · · · = α

β1 = β2 = · · · = β

on the variables, we come up with a basic model defining an iterated linear map

F : Dn → Dn : x 7→ αWx+ βXB
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on some opinion domain D.

Let us consider the orbit of x(0) = XB under F :

x(0) = XB

x(1) = F (x(0)) = αWXB + βXB = (αW + βI)XB

x(2) = F (x(1)) = αW (αW + βI)XB + βXB = (α2W 2 + αβW + βI)XB

x(3) = F (x(2)) = αW (α2W 2 + αβW + βI)XB + βXB

= (α3W 3 + α2βW 2 + αβW + βI)XB

An easy inductive argument shows that for the k-th iteration F k:

x(k) = αkW kXB +

(
k−1∑
t=0

αtW t

)
βXB

Lemma 4.4 Let 0 < α < 1. For all k ∈ N+ the following statements hold:

1. lim
k→∞

αkW k = 0

2. lim
k→∞

k∑
t=0

αtW t = (I − αW )−1

Proof: We prove both equation individually.

1. Recall that all entries of the matrix W (and thus of matrices W k, too) are nonneg-
ative and at most one. So, for i, j ∈ {1, . . . , n} we have

0 ≤ lim
k→∞

(
αkW k

)
ij

= lim
k→∞

αkw
(k)
ij ≤ lim

k→∞
αk = 0.

2. Since W is a stochastic matrix, the maximum eigenvalue is one. It follows that the
inverse matrices (I − αW )−1 always exists. We calculate(

lim
k→∞

k∑
t=0

αtW t

)
· (I − αW ) = lim

k→∞

(
k∑
t=0

αtW t

)
· (I − αW )

= lim
k→∞

(
k∑
t=0

αtW t −
k∑
t=0

αt+1W t+1

)
= α0W 0 − lim

k→∞
αk+1W k+1

= I (by statement 1.)
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54 Chapter 4. Opinion Formation

This proves the lemma.

By this lemma, we have a strong convergence guarantee for all orbits in the basic Friedkin-
Johnsen model.

Theorem 4.5 If 0 < α < 1 then

lim
k→∞

x(k) = (I − αW )−1βXB,

where XB = x(0) is the initial opinion profile.
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