## Assignment 5

## Ausgabe: 18 Nov 2015 Abgabe: 01 Dec 2015

We consider psychology-of-conformity dynamics from the lecture, which is given by the following transition matrix $P$ of a Markov chain with finite state space $J=\{0,1\}^{3}$ :

$$
P=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 0 & 1 / 6 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 1 / 6 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 6 & 0 \\
0 & 1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 / 6 & 0 & 1 / 2 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Note that states are enumerated in lexicographical order, i.e., $000,001,010, \ldots, 111$.

## Problem 1: Transition probabilities

For the Markov chain above with state space $J=\{0,1\}^{3}$ and transition matrix $P$. Consider the initial distributions:

$$
q^{(0)}=(1 / 8, \ldots, 1 / 8), \quad r^{(0)}=(1 / 2,1 / 14, \ldots, 1 / 14)
$$

(a) Determine the distributions $q^{(1)}$ and $q^{(2)}$.
(b) Determine the distributions $r^{(1)}$ and $r^{(2)}$.
(c) Do the sequences $\left(q^{(t)}\right)_{t \in \mathbb{N}}$ and $\left(r^{(t)}\right)_{t \in \mathbb{N}}$ converge? If "yes," what are the limits of the sequences?

Hint: You may use appropriate software.

## Problem 2: Hitting time

Let $\left(X_{0}, X_{1}, \ldots\right)$ be a Markov chain with finite state space $J$ and transition matrix $P$. The hitting time $T_{i, j}$ for state $j \in J$ of the Markov chain starting in state $i \in J$ (i.e., $X_{0}=i$ ) is the random variable defined by

$$
T_{i, j}={ }_{\text {def }} \min \left\{t \in \mathbb{N}_{+} \mid X_{t}=j \text { if } X_{0}=i\right\},
$$

where $T_{i, j}={ }_{\text {def }} \infty$ if $j$ is never reached from $i$. The mean hitting time $\tau_{i, j}$ is defined by

$$
\tau_{i, j}={ }_{\text {def }} \mathbf{E}\left(T_{i, j}\right) .
$$

In the following, consider the Markov chain above with state space $J=\{0,1\}^{3}$.
(a) Determine the distribution of the hitting time $T_{001,000}$.
(b) Determine the mean hitting time $\tau_{001,000}$.
(c) Determine the distribution of the hitting time $T_{010,000}$.
(d) Determine the mean hitting time $\tau_{010,000}$.

## Problem 3: Return time

Let $\left(X_{0}, X_{1}, \ldots\right)$ be a Markov chain with finite state space $J$ and transition matrix $P$. Then, hittin time $T_{i, i}$ is called return time, mean hitting time $\tau_{i, i}$ is called mean return time.

Determine the mean return times for all states $i \in\{0,1\}^{3}$ of the Markov chain above.
Hint: Use symmetries of the Markov chain and among the states.

